A dinâmica de sistemas mecânicos normalmente é modelada como um sistema de equações diferenciais. Estas equações diferenciais devem ser resolvidas a fim de relacionar as variáveis entre si quando o sistema interage com suas perturbações ou para identificar os parâmetros do sistema utilizando perturbações conhecidas.

Quando uma equação diferencial não é fácil de ser resolvida analiticamente, usam-se métodos numéricos adequados para representar o comportamento dinâmico.

No capítulo 2 desenvolveram-se sistemas de equações diferenciais. Para a solução destas equações emprega-se o método de Runge-Kutta Fehlberg de 5^a ordem (RKF5) com controle de passo variável.

3.1. Análise das Equações de Movimento

As equações diferenciais podem ser divididas em dois grandes grupos: equações lineares e não lineares. As equações lineares em geral são simples de serem resolvidas, porque suas soluções têm propriedades gerais que facilitam o trabalho e existem métodos padronizados para resolver a maioria delas. No entanto, as equações não lineares são difíceis de serem resolvidas analiticamente; o que implica o uso de métodos aproximados, métodos numéricos, para encontrar a sua solução.

Analisando as equações de movimento desenvolvidas para os subsistemas eixo-rotor e estator, Eqs. (2.21) e (2.25), respectivamente, chega-se à conclusão que são equações diferenciais não lineares. A não linearidade é devido à força de impacto; a força de impacto só aparece quando o rotor entra em contato com o estator, caso contrario, esta força é nula. Outra característica que mostra a equação de movimento do subsistema eixo-rotor, Eq. (2.21), é que a matriz de massa depende do tempo. Uma análise do determinante desta matriz mostrará se ela é

singular para algum domínio do tempo. Mas, o cálculo do determinante, $\left|\mathbf{M}\right|=J_m(m_d+m)(m_dJ+m_dm\varepsilon^2+mJ)\,,\ \text{mostra que ele não depende do tempo,}$ chegando-se à conclusão de que a matriz de massa não tem singularidade em todo o domínio temporal, o que implica que sua inversa sempre existe.

3.2. Resposta Dinâmica do Sistema

Existem vários métodos para a determinação da resposta temporal de sistemas rotativos do tipo eixo-rotor quando estão submetidos a cargas externas.

Um dos métodos mais usados na determinação da resposta do sistema é o da integração direta. Neste método, as equações de movimento são resolvidas através de algoritmos adequados de integração numérica, com incrementos temporais em um certo intervalo de tempo, esta é uma solução passo a passo.

A técnica de integração direta consiste em obter a solução do problema em intervalos discretos de tempo Δt (os intervalos Δt podem ser fixos ou variáveis). Durante o processo de integração temporal, são consideradas as condições iniciais de deslocamento e velocidade, e o período de observação é dividido em intervalos de tempo de tal forma que a solução num instante $t + \Delta t$ seja calculada a partir de resultados obtidos no instante anterior t.

3.3. Métodos de Integração

Na literatura sobre métodos de integração numérica, existem muitas técnicas para resolver problemas de valor inicial (PVI) de primeira ordem, Maron & López [20].

Os PVI são da forma:

$$\frac{dy}{dt} = f(t, y) \tag{3.1}$$

sujeitas à condição inicial $y(t=t_0)=y_0$, onde f(t,y) é continua para (t,y) em torno de (t_0,y_0) e $\frac{dy}{dt}=\dot{y}$ é a derivada em relação ao tempo.

Os métodos auto-iniciantes aproximam o valor de $y_{(t_j+h)}$ como $y_{j+1} = y_j + h * \sum C_1 f(\tilde{t}_i, \tilde{y}_i)$, onde $h = \Delta t$, C_1 é uma constante e as $f(\tilde{t}_i, \tilde{y}_i)$ são as derivadas mostradas que se calculam depois de obter o valor de y_j .

Um dos métodos tradicionais usados na integração numérica é o de *Runge-Kutta* de 4^a ordem (RK4), e, embora este seja o mais usado, no presente trabalho utiliza-se o método de *Runge-Kutta Fehlberg* de 5^a ordem (RKF5) dadas às limitações do RK4.

Uma das limitações RK4 é a necessidade de quatro cálculos de f(t, y) por passo, o que pode ser grave quando a função derivada é complicada. Uma segunda limitação de RK4 é a falta de uma estimação do erro para y_{j+1} por passo.

3.3.1. Método de Runge-Kutta de 4ª Ordem (RK4)

Este método consiste na estimativa do valor da função f(t, y) em vários pontos intermediários. O ponto final (escolhido) será a média ponderada entre esses pontos intermediários. Este método é baseado na série de Taylor e sua ordem será definida pela ordem desta série. O RK4 implementado é de quarta ordem global.

$$k_1 = hf(t_j, y_j)$$

$$k_2 = hf(t_j + \frac{1}{2}h, y_j + \frac{1}{2}k_1)$$

$$k_3 = hf(t_j + \frac{1}{2}h, y_j + \frac{1}{2}k_2)$$

$$k_4 = hf(t_j + h, y_j + k_3)$$

A partir das k 's é possível encontrar o valor de y_{j+1} através de:

$$y_{j+1} = y_j + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

Os fatores 1,2,2 e 1 definem o peso para os termos k_1 , k_2 , k_3 e k_4 , respectivamente. Com este método consegue-se atingir uma precisão bem melhor

se comparado com outros métodos, por exemplo, o método de *Euler*, mas consequentemente o método utiliza uma maior capacidade computacional, e sendo assim é mais lento para chegar ao ponto final. Mas isso pode ser contornado com o uso de computadores de bom desempenho.

3.3.2. Método de Runge-Kutta Fehlberg de 5^a Ordem (RKF5)

Entre os métodos de tamanho de passo variável, o mas confiável é o método de Runge-Kutta Fehlberg de 5^a ordem (RKF5), este método usa 6 equações de f(t,y) para obter os valores de k_1 , k_2 , k_3 , k_4 , k_5 e k_6 .

Runge-Kutta Fehlberg utiliza a idéia geral do Runge-Kutta acima, duas estimativas do Runge-Kutta são calculadas, uma de 4^a (\hat{y}) e outra de 5^a ordem (y), mas ambas utilizando os mesmos k's para os cálculos, com isso a função será calculada apenas 6 vezes. Este método também pode ser facilmente extendido para variações de passo, pois com os mesmos k's calcula-se um erro (ErrEst) que pode servir como função de ajuste do passo. Os valores dos k's são as seguintes:

$$k_{1} = hf(t_{j}, y_{j})$$

$$k_{2} = hf(t_{j} + \frac{1}{4}h, y_{j} + \frac{1}{4}k_{1})$$

$$k_{3} = hf(t_{j} + \frac{3}{8}h, y_{j} + \frac{3}{32}k_{1} + \frac{9}{32}k_{2})$$

$$k_{4} = hf(t_{j} + \frac{12}{13}h, y_{j} + \frac{1932}{2197}k_{1} - \frac{7200}{2197}k_{2} + \frac{7296}{2197}k_{3})$$

$$k_{5} = hf(t_{j} + h, y_{j} + \frac{439}{216}k_{1} - 8k_{2} + \frac{3680}{513}k_{3} - \frac{845}{4104}k_{4})$$

$$k_{6} = hf(t_{j} + \frac{1}{2}h, y_{j} - \frac{8}{27}k_{1} + 2k_{2} + \frac{3544}{2565}k_{3} + \frac{1859}{4104}k_{4} - \frac{11}{40}k_{5})$$

$$(3.2)$$

e a seguir usam-se $k_1, ..., k_6$ para obter duas aproximações de $y(t_j + h)$, que são:

$$\hat{y}_{j+1} = y_j + \frac{25}{216}k_1 + \frac{1408}{2565}k_3 + \frac{2197}{4104}k_4 - \frac{1}{5}k_5, \text{ ordemO}(h^4)$$

$$y_{j+1} = y_j + \frac{16}{135}k_1 + \frac{6656}{12825}k_3 + \frac{28561}{56430}k_4 - \frac{9}{50}k_5 + \frac{2}{55}k_6, \text{ ordemO}(h^5)$$
(3.3)

Uma estimação do erro pode ser obtida como:

$$ErrEst = y_{j+1} - \hat{y}_{j+1} = \frac{1}{360}k_1 - \frac{128}{4275}k_3 - \frac{2197}{75240}k_4 + \frac{1}{50}k_5 + \frac{2}{55}k_6$$
 (3.4)

A maioria dos algoritmos para resolver equações diferenciais, especialmente aplicando o método de RKF5, podem ser encontrados em Maron & López [20] e Kreyszig [21].

3.4. Solução das Equações de Movimento: Equação de 1ª Ordem

A equação de movimento do subsistema, eixo-rotor, esta definida pela Eq. (2.21), obtida no item 2.4: esta é uma equação de segunda ordem da forma:

$$M\ddot{Z} + \zeta \dot{Z} + KZ + P = Q$$

Esta equação também pode ser escrita como:

$$\ddot{\mathbf{Z}} = -\mathbf{M}^{-1} \zeta \dot{\mathbf{Z}} - \mathbf{M}^{-1} \mathbf{K} \mathbf{Z} - \mathbf{M}^{-1} \mathbf{P} + \mathbf{M}^{-1} \mathbf{Q}$$
(3.5)

Para passar a uma equação de primeira ordem, introduz-se a variável nova:

$$\dot{\mathbf{Z}} = \mathbf{Z}_1 \tag{3.6}$$

Logo, a Eq. (3.5) transforma-se para:

$$\dot{\mathbf{Z}}_{1} = -\mathbf{M}^{-1} \zeta \mathbf{Z}_{1} - \mathbf{M}^{-1} \mathbf{K} \mathbf{Z} - \mathbf{M}^{-1} \mathbf{P} + \mathbf{M}^{-1} \mathbf{Q}$$
(3.7)

Ordenando adequadamente as Eqs. (3.6) e (3.7) na forma compacta:

$$\begin{bmatrix} \dot{\mathbf{Z}} \\ \dot{\mathbf{Z}}_1 \end{bmatrix} = \begin{bmatrix} \mathbf{0} & \mathbf{I} \\ -\mathbf{M}^{-1}\mathbf{K} & -\mathbf{M}^{-1}\zeta \end{bmatrix} \begin{bmatrix} \mathbf{Z} \\ \mathbf{Z}_1 \end{bmatrix} + \begin{bmatrix} \mathbf{0} \\ \mathbf{F} \end{bmatrix}$$
(3.8)

onde
$$\mathbf{F} = -\mathbf{M}^{-1}(\mathbf{P} - \mathbf{Q})$$
.

Constatou-se, no item 2.4, que o determinante da matriz de massa é diferente de zero ($|\mathbf{M}| \neq 0$). Isto indica que ao resolver a Eq. (3.8) não teremos problemas de singularidade.

Das Eqs. (2.21) e (2.25), equações de movimento para os subsistemas eixo-rotor e estator, respectivamente, podemos isolar a variável aceleração para cada um das equações, da seguinte forma:

$$\ddot{x} = f_X(t, x, \dot{x}, y, \dot{y}, \theta, \dot{\theta}, \phi, \dot{\phi})$$

$$\ddot{y} = f_Y(t, x, \dot{x}, y, \dot{y}, \theta, \dot{\theta}, \phi, \dot{\phi})$$

$$\ddot{\theta} = f_{\theta}(t, x, \dot{x}, y, \dot{y}, \theta, \dot{\theta}, \phi, \dot{\phi})$$

$$\ddot{\theta} = f_{\phi}(t, x, \dot{x}, y, \dot{y}, \theta, \dot{\theta}, \phi, \dot{\phi})$$

$$\ddot{X} = f_X(t, X, \dot{X}, Y, \dot{Y})$$

$$\ddot{Y} = f_Y(t, X, \dot{X}, Y, \dot{Y})$$
(3.9)

Seja a seguinte definição de novas variáveis:

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \\ \dot{\phi} \\ \dot{x} \\ \dot{Y} \end{bmatrix} = \begin{bmatrix} x_1 \\ y_1 \\ \theta_1 \\ \phi_1 \\ X_1 \\ Y_1 \end{bmatrix} \rightarrow \begin{bmatrix} \ddot{x} \\ \ddot{y} \\ \ddot{\theta} \\ \ddot{\phi} \\ \ddot{x} \\ \ddot{Y} \end{bmatrix} = \begin{bmatrix} \dot{x}_1 \\ \dot{y}_1 \\ \dot{\theta}_1 \\ \dot{\phi}_1 \\ \dot{x}_1 \\ \dot{Y}_1 \end{bmatrix}$$

Logo, a Eq. (3.9) fica como um sistema de doze equações diferenciais de primeira ordem:

$$\dot{x} = x_{1}
\dot{y} = y_{1}
\dot{\theta} = \theta_{1}
\dot{\phi} = \phi_{1}
\dot{X} = X_{1}
\dot{Y} = Y_{1}
\dot{x}_{1} = f_{X}(t, x, x_{1}, y, y_{1}, \theta, \theta_{1}, \phi, \phi_{1})
\dot{y}_{1} = f_{y}(t, x, x_{1}, y, y_{1}, \theta, \theta_{1}, \phi, \phi_{1})
\dot{\theta}_{1} = f_{\theta}(t, x, x_{1}, y, y_{1}, \theta, \theta_{1}, \phi, \phi_{1})
\dot{\phi}_{1} = f_{\phi}(t, x, x_{1}, y, y_{1}, \theta, \theta_{1}, \phi, \phi_{1})
\dot{X}_{1} = f_{X}(t, X, \dot{X}, Y, \dot{Y})
\dot{Y}_{1} = f_{Y}(t, X, \dot{X}, Y, \dot{Y})$$
(3.10)

Este novo sistema de equações diferenciais de primeira ordem, Eq. (3.10), é resolvido para os deslocamentos e velocidades de cada um das variáveis, $\begin{bmatrix} x & y & \theta & \phi & X & Y & x_1 & y_1 & \theta_1 & \phi_1 & X_1 & Y_1 \end{bmatrix}^T$, aplicando as equações de integração numérica desenvolvida no item 3.3.2.

3.5. Rigidez das Equações de Movimento

Qualquer método auto iniciante, traçará a solução y(t) quando se toma um tamanho de passo h o suficientemente pequeno. Infelizmente, esta afirmação não é certa se o PVI é rígido.

Os PVI que se apresentam no controle de processos químicos, na teoria de circuitos elétricos e em vibrações mecânicas, são com freqüência rígidos porque suas soluções possuem termos exponenciais da forma $c_i e^{-\lambda_i t}$ onde $0 \le (\lambda_i)_{\min} << (\lambda_i)_{\max}$.

As equações diferenciais em estudo, Eqs. (2.21) e (2.25), são rígidas basicamente devido ao valor elevado do coeficiente de rigidez de contato (K_C) comparado com as outras constantes de rigidez, amortecimento ou massa que aparecem no sistema.

Na literatura relacionada ao impacto, existem vários autores que citam diferentes valores para K_C , por exemplo:

- Zapomel [14] usa $K_C = 1.0 \times 10^9 \, \text{N/m}$, para dois materiais iguais (aço-aço) baseado na teoria de contato de Hertz.
- Bartha [5] experimentalmente encontra o valor de K_C para diferentes pares de materiais (segundo nomeação DIN): $K_C = 2.45 \times 10^8 \, \text{N/m}$ (St52-Ck45) e $K_C = 7.2 \times 10^6 \, \text{N/m}$ (St52-X6CrMo17.1).
- Chu and Zhang [22] usam o valor de $K_C = 6.0 \times 10^7 \, \text{N/m}$ para as simulações numéricas.

Na teoria de contato de Hertz, o valor de K_C é função das propriedades dos materiais e da geometria das superfícies em contato.

No presente trabalho adota-se: $K_C = 1.0 \times 10^6 \, \mathrm{N/m}$ para as simulações numéricas, já que no instante do impacto, vai primar a deformação elástica do anel (suportado com 4 parafusos) antes que a deformação plástica no ponto de contato.

Para poder resolver as equações de movimento é necessário homogeneizar os coeficientes da equação diferencial. Algumas vezes, uma escolha adequada de um sistema de unidades para as grandezas pode resolver o problema da rigidez.

Outra forma de homogeneizar os coeficientes, que foi adotado neste trabalho, é mudando a escala do tempo, $\tau = w_0 t$, como se mostra no item 2.1.1. Neste caso o valor de w_0 deve ser escolhido convenientemente (por exemplo $w_0 = 1.0 \times 10^3$) para que os coeficientes das equações de movimento tenham a mesma ordem de magnitude. Depois de homogeneizar os coeficientes, mediante uma mudança conveniente na escala do tempo, o sistema de equações pode ser integrado numericamente sem problemas de rigidez.